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Electrostimulated anaerobic reactor 
(ELSARTM) 

 
 
Description of the technology  
The electrostimulated anaerobic reactor (ELSARTM) combines anaerobic digestion with 
bioelectrical processes. It can be applied as anaerobic pretreatment of raw wastewater with 
high COD loads or as sludge treatment. Until now the majority of bioelectrochemical 
processes have only been operated in lower scale configurations (Park et al. 2020a). In 
Ultimate, one of the first industrial scale system treating 450 m³/d of wastewater is 
demonstrated (CS Lleida). The reactor is basically a combination of an upflow anaerobic sludge 
blanket reactor (UASB) with integrated electrodes (Fig. 1).  
Here, organic matter is converted to biogas by fermentative and methanogenic 
microorganisms. Due to the integrated bioelectrical system, electroactive microorganisms 
oxidize organic matter and release electrons to the anode as well as hydrogen ions and CO2 
(Torres et al. 2007). Those substrates are used by other microorganisms together with the 
electrons released by the cathode to produce hydrogen gas and subsequently methane.  
In detail, three mechanisms can play a role: (1) direct bioelectrochemical methanation, (2) H2-
mediated methanation also known as hydrogenotrophic methanogenesis and (3) carbon 
compounds-mediated methanation consisting of autotrophic acetogenesis combined with 
acetoclastic methanogenesis (Park et al. 2020a). The different pathways enable a high 
flexibility and thus, allow for maintaining a stable biogas formation process. Hence, the 
bioelectrical process increases the methane production rate compared to typical anaerobic 
systems (Zhang et al. 2018, Park et al. 2020b) and shortens stabilisation periods after shock 
loads (De Vrieze et al. 2018, Park et al. 2020b). 
 
Flow scheme of the technology 
The electrostimulated anaerobic reactor is an upflow anaerobic sludge blanket reactor with 
integrated electrodes (Fig. 1). The electroconductive anode consists of the fluidized bed made 
of activated carbon particles. This anode transfers the electrons via collision to a static 
graphite electrode with a polarized structure. The granular activated carbon is be added only 
once, during the start-up. However, some extra GAC injections may be necessary to 
compensate losses (purge, treated water). Because of their higher density than that of the 

Unique selling points: 
 

 Energy recovery in the form of biogas 

 Higher organic loading rates compared to anaerobic 

digestion 

 Increased process stability  

 Short stabilisation periods after shock loads 

 Higher calorific value of the biogas due to higher H2 

content 
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biomass granules, GAC will be slightly fluidized (expected < 40%) and therefore it will be 
located in the lowest zone of the bioreactor.  

 

Fig. 1 Electrostimulated anaerobic reactor (ELSAR): UASB reactor with integrated electrodes 

The wastewater is pumped in the reactor at the bottom and flows to the top in a vertical 
cylindrical reactor. The 3-phase separator separates the gas, liquids and solids (granular 
activated carbon and granular sludge). The granules settle down to the bottom. The liquid 
stream and the biogas bubbles ensure good mixing conditions.  
In the buffer tank (same height, less diameter than the reactor), the pH and the temperature 
of the inlet wastewater are adjusted by means of chemical addition (NaOH or HCl) and heating 
(Ultimate case study: 30-37°C), respectively. The biogas is collected in every separator and 
recirculated to add alkalinity to the inlet wastewater. On the top of the reactor, the clear water 
is collected. 
 
Pictures of the technology and product 
Will be added later, when available 
 
 
Synergetic effects and motivation for the implementation of the technology 

 Higher methane production rates compared to anaerobic digestion 

The bioelectrochemical anaerobic digestion accelerates the hydrogen production due to the 
release of hydrogen ions from organic matter during electrolysis (Park et al. 2020b). The 
higher availability of hydrogen together with CO2 allows hydrogenotrophic methanogens to 
produce more methane due to higher process efficiencies and due to faster production rates 
(Park et al. 2020a). 
Furthermore, An et al. 2020 showed, that electroactive bacteria rapidly enriched on the 
surface of an electrode as well as in the bulk solution and adapted themselves to the 
conditions in the reactor. Due to their contribution to methane production via the direct 
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interspecies electron transfer pathways on the electrode and in the bulk solution, the 
methane production rate increased significantly (An et al. 2020). 

 Shorter stabilisation periods compared to anaerobic digestion 

Park et al. 2019 and Asensio et al. (2021) showed that bioelectrochemical anaerobic 
digestion overcomes the imbalance during shock loads or high organic loading rates 
between 10 kg COD/(m³*d) and 24 kg COD/(m³*d), because electroactive microorganisms 
oxidize organic matter and release electrons to the anode as well as hydrogen ions (H+) and 
CO2. In parallel, hydrogenotrophic methanogens convert rapidly the H+ using the electrons 
released from the cathode to H2. Hence, the pH can be regulated and an accumulation of 
volatile fatty acids can be decreased due to the rapid conversion of organic acids to H2 and 
CO2.  
Requirements of the technology and operating conditions 
As for an UASB reactor, the hydraulic retention time is decoupled from the sludge blanket 
residence time (Tab. 1). The reactor temperature is usually at 37 °C or 55 °C for mesophilic or 
thermophilic organisms, respectively. The pH of the inflow must be neutral or slightly above, 
because the methanogens are very sensitive to an acidic pH. The organic loading rate is usually 
operated between 10 and 24 kg COD/(m³*d) and the sludge content should vary between 3 
and 4%. For the mixing conditions, the liquid upflow velocity plays a crucial role and is 
depending on the reactor geometry between 1 and 6 m/h.  
For the electrodes, usually, the applied voltages range between 0.2 and 1.5 V depending on 
the type of substrate. The current densities also depend on the type of substrate and range 
between 0.45 and 9 A/(m² electrode surface area). 
 
Tab. 1 Typical ranges for operating parameters 

Parameter Units Min Max Reference 

Organic loading rate kg 
COD/(m³*d) 

10 24 Park et al. 2020a; Metcalf et 
al. 2013; Asensio et al. 2021b 

Sludge content % 3 4 Metcalf et al. 2013 

pH - 7 8.5 Chen et al. 2008 

Temperature °C 35 55 Deublein et al. 2008 

Hydraulic retention 
time (UASB) 

h 4 10 Deublein et al. 2008, Metcalf 
et al. 2013 

Sludge blanket 
residence time 

d >30 Metcalf et al. 2013 

Liquid stream velocity m/h 1 6 Metcalf et al. 2013 

Applied voltages V 0.2 1.5 Park et al. 2020a, Asensio et 
al. 2021 

Current densities A/m² 0.45 9.0 An et al. 2020, Asensio et al. 
2021, Torres et al. 2007 

 
Key performance indicators 
Depending on the types of substrates, the methane yields vary as shown in Tab. 2. The COD 
removal rates of around 86% of a bioelectrochemical anaerobic reactor are higher than those 
of non-electrochemical systems such as aerobic membrane bioreactors, sequencing batch 
reactors and anaerobic UASB reactors ranging between 70%-80% (Asensio et al. 2021).  
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Tab. 2 Average methane yields and COD removal efficiencies for different types of 
substrate in a bioelectrochemical anaerobic reactor; oDM organic dry matter 

Parameter Unit Methane yield References 

Food waste m³/(kg oDM) 0.53 Park et al. 2018 

Distillery wastewater m³/(kg oDM) 0.48 Feng et al. 2017 

Brewery wastewater m³/(kg oDM) 0.22 Sangeetha et al. 2016 

 Unit COD removal  

Brewery wastewater % 85-87 Sangeetha et al. 2016, 
Asensio et al. 2021 

 
For waste activated sludge as substrate, Cai et al. 2016 and Bo et al. 2014 observed in their 
laboratory experiments a two-fold higher methane yield in the bioelectrochemical system 
than for their conventional anaerobic digester control reactors.  
 
Links to related topics and similar reference projects 

Process/technologies Reference 

Enhanced biogas production due to 
thermal hydrolysis process (THP) 

Case study “Braunschweig” (NextGen) 

Anaerobic membrane reactor 
(AnMBR) 

Case study “Spernal” (NextGen) 

Anaerobic high rate reactor (AAT) Case study “Shafdan” & Case study “Karmiel” 
(Ultimate) 

Anaerobic digestion Factsheet in TEB 
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Outlook  
Case study specific information will be provided, when the results of the other work 
packages are available: 

 Water smart industrial symbiosis 

 Operational challenges and lessons learned from the case study 

 Outcome of the assessments 

 Legal and regulatory information concerning the whole value chain concerning the 

technology  

 Business opportunities 


